

New formulation for oral care

Emile PEREZ

co-leader of the SMODD team, laboratoire des IMRCP, UMR5623 Toulouse, France

Numerous industrial collaborations

- Aeronautics and space (Airbus and Airbus DS)
- Cosmetic (Pierre Fabre, Affichem, Gattefossé)
- Food industry (Poult, Nataïs, AGIR)

- 2 products marketed with Pierre Fabre (Trixera+® et Triacneal®)
- Sunscreen oils formulation (PF)
- Whitening formulations (PF, CERPER)
- Analytical evaluation of ELUDRIL® and one of its generics.

Nanoparticles of organogels or gelosomes

Principle of preparation and applications

Organogelator: HSA

Self assembly in a 3D network of fibers

HSA self-organization in fibrils

Fiber bundles

Gel: 3D fiber network

Organogel nanoparticles or gelosomes preparation

TEM of gelosomes
Sonication

Emulsions stability/gelosome dispersions

5% oil with and without HSA during 45 days

gelosomes dispersions more stable than the corresponding emulsions

- No coalescence (semi-rigid droplets)
- Good stabilization of the interface (surfactant adsorption)

Gelosomes of sunscreen oil

Used sunscreen: Avobenzone UVA (17%), solubilized in octocrylene UVB

Mixture composition: 15% HSA, PVA 80 2%, oil 10% Tgel ~ 70℃

Mean diameter 800 nm (TEM)

- Absorption of dispersions in UVA and UVB
- Absorbance intensity greater than the mixture (UVA + UVB).
- Phenomenon of optical diffusion of the gelosomes

Gelosomes and essential oils (EO)

-Use of gelosomes to introduce essential oils into oral care formulations

- Proof of concept with Toulouse Tech Transfer

Methods to introduce essential oils in an aqueous phase

1) Homogeneous systems:

- Use of a cosolvent(ethanol)

 Disadvantages → irritation, toxicity, regulation
- Use of solubilizers (short chain surfactant (SU))

 Disadvantages → Important amount (40% SU for 10% EO)

2) Heterogeneous systems:

- **Emulsions**Disadvantages → Unstable systems
- **Gelosomes**Advantages → Stable systems

 Disadvantages → Need gelation of EO + vegetable oil

Existing mouthwashes based on essential oils:

Advantages:

- Antibacterial products of natural origin
- Low but persistent antibacterial activity
- Respect of the oral ecosystem (moderate activity spectrum)
- Possible daily and prolonged use
- Possible synergy by mixing essential oils

Disadvantages:

-Essential oils insoluble in water

- Mouthwashes based on ethanol
- Mouthwashes based on instables O/W emulsions

Oily mouthwashes (oil pulling, ayurvedic medicine):

Advantages:

- Natural antibacterial vegetable oils
- Solubilizes fatty waste in the mouth
- Antibacterial on specific strains (*Streptococcus mutans* for sesame and coconut oil)
- Limits the erosion of enamel and dentine (lubricating film)
- -Very trendy practice (yoga, Indian medicine)

Disadvantages:

- Very limited antibacterial activity
- Unpleasant fatty sensation in the mouth, gagging
- Must be stirred in the mouth for a long time (20 min) to form an effective emulsion
- After use, requires rinsing and brushing teeth
- Limited to oils with pleasant taste (coconut, sesame)

Choice of essential oils

- According to the literature:
 - Thyme essential oil:
 - Antibacterial
 - Clove essential oil:
 - Antibacterial
 - Antihaemorrhagic
 - Tea Tree essential oil:
 - Antihaemorrhagic
- Possibility to choose other essential oils according to the desired properties
- Possibility also to choose a vegetable oil with interesting properties

Antibacterial Test 1

- Test to prove the effectiveness of EO
 - Tests performed in the laboratory FONDEREPHAR (Toulouse)
- Study n°1: Evaluation of the inhibitory activity of 3 essential oils
 - Test carried out on agar media
 - Study of EO activity on 10 strains of bacteria

Antibacterial Test 1

Bacteria	Туре	Chlorhexidine	Sunflower oil	EO Tea Tree	EO Clove	EO Thyme
Lactobacillus casei	Gram +	0.25%	> 5%	5%	0.625%	1.25%
Porphyromonas gingivalis	Gram -	0.125	> 5%	0.31%	< 0.16%	< 0.16%
Prevotella intermedia	Gram -	0,25%	5%	1.25%	0,625%	0,16%
A.actinomycete mcomitans	Gram -	<0.03%	> 5%	< 0,16%	< 0.16%	< 0.16%
A. odontolyticus	Gram +	<0,03%	> 5%	< 0.16%	< 0.16%	< 0.16%
S.salivarius	Gram +	<0,03%	> 5%	0.625%	< 0,16%	< 0,16%
S.mutans	Gram +	<0,03%	> 5%	0.625%	< 0.16%	< 0.16%
T. forsythensis	Gram -	<0,03%	> 5%	0.625%	< 0.16%	< 0.16%
C. Rectus	Gram -	<0,03%	> 5%	0,31%	< 0,16%	< 0.16%
Wolinella species	Gram -	<0.03%	> 5%	0.31%	< 0,16%	< 0,16%

Study carried out with CIP bacteria (Collection de l'Institut Pasteur)

Antibacterial Test 2

- Evaluation of the antibacterial activity of gelosomes containing essential oils
 - Test carried out on stirred culture medium
 - The samples to be analyzed are suspended in the culture medium with the bacteria
 - Different dilutions are made, the presence or absence of turbidity indicates the antibacterial activity of the sample
 - Activity study on 2 bacteria
 - Lactobacillus casei
 - Prevotella intermedia

Stability study of the gelosomes

- Study carried out with the LUMiFuge®
 - Technique that accelerates the aging of emulsions and dispersions
 - Analytical centrifugation

Study carried out with gelosomes at 20% oil at 4000 rpm speed

Sunflower oil	EO Thyme	EO Clove	Destabilization (%/h)
100%	0%	0%	2.00
95%	5%	0%	2.30
95%	0%	5%	1.91
95%	2.5%	2.5%	2.08

Gelosomes stability >> 1 an

Gelosomes mouthwashes (vegetable oil + EO):

Advantages:

- Advantages of EO (natural antibacterials)
- Benefits of the oil pulling
- Modular efficiency according to the duration
- Very stable dispersion of gelosomes
- Possible daily and prolonged use (respect of the oral ecosystem)
- Synergy vegetable oil/essential oils (cleansing and antibacterial)

Inconvénients:

- Milky aspect...

Contact: Claire METAIS

Business Manager, Toulouse Tech Transfer

meta is @toulouse-tech-transfer.com